
International Journal of Theoretical Physics, Vol. 32, No. 6, 1993 

Weyl Equation in Some Anisotropic 
Stiff Fluid Universes 

L u i s  O .  P i m e n t e l  I 

Received April 23, 1992 

The Weyl equation (massless Dirac equation) is studied in a family of exact 
solutions of the Einstein equations whose material content is a perfect fluid with 
stiff equation of state (p = e) and which are of Bianchi type I. The field equation 
is solved exactly for some members of the family. 

1. I N T R O D U C T I O N  

Recently there has been an increasing interest in quantum mechanics 
in external gravitational fields. Several authors have presented the analysis 
of  the spectrum of the hydrogen atom in some particular metrics (Audretsch 
and Sch~ifer, 1978a, b) as well as in general gravitational fields (Parker, 
1980a, b; Parker and Pimentel, 1982) and also as possible detectors of 
gravitational waves (Leen et aL, 1983). The detailed study of the exact 
solutions of  the relativistic equations in curved spacetimes is a prerequisite 
to the construction of a quantum field theory in those curved backgrounds. 
The reported exact solutions to the Dirac and Weyl equations have been 
obtained by the method of  separation of variables [for recent exact solutions 
see Cimento and Mollerach (1986, 1987), Barut and Duru (1987), Krori et 
al. (1988), Percoco and Villalba (1991), Villalba and Percoco (1990), Villalba 
(1990), and Castagnino et al. (1988)]. The question of the separability of  
the Dirac equation in curved spacetimes has been considered by several 
authors (Iyer and Kamaran,  1991; Iyer and Vishveshwara, 1987; Shishkin 
and Villalba, 1989). Here we consider the massless spinor field equation in 
a family of  stiff fluid solutions. The metric was obtained by Jacobs (1968) 
and is also given by Vajk and Eltgroth (1970) and it is a particular case of  
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the metrics studied by Thorne (1967); more recently it was rediscovered by 
Iyer and Vishveshwara (1987) while looking for exact solutions of  Einstein's 
equations in which the Dirac equation separates. We write the metric in 
the "Kasner-like" form 

ds 2= dt2 - a~( t ) d x 2 -  a~( t ) dy2 - a~( t ) dz  2 (1) 

where 

as( t )  = a2(t)  = t q, a3 = t 1-2q (2) 

This metric is a one-parameter family of  solutions to Einstein's 
equations with a perfect stiff fluid. The parameter q is related to the energy 
density by the relation 

q ( 2 - 3 q )  
e = p  = t2 (3) 

The qualitative features of the expansion depend on q in the following 
way: for 1< q, the universe expands from a "cigar" singularity; for q = �89 
the universe expands purely transversely from an initial "barrel"  singularity; 
for 0 < q < � 8 9  the initial singularity is "point-like" if q-<0, we have a 
"pancake"  singularity. The case q = ~ is the isotropic universe with a stiff 
fluid; the case q = 0 is a region of  the Minkowski spacetime in non-Cartesian 
coordinates. This family of  metrics is "Kasner-like" in the sense that the 
sum of the exponents is equal to one, but the sum of the squares is not 
equal to one except in the two cases when q = 0 and q =2, when we have 
the vacuum. The symmetries of  these spacetimes can be described by four 
spacelike Killing vector fields, 

0 0 0 0 0 
~-~ = - - ,  ~4 = - -  ( 4 )  ~, X ~ y - Y - ~ x ,  ~2=Ox,  ~3 Oy Oz 

The first vector corresponds to the rotational symmetry in the plane xy  
and the other three to the translational symmetries along the x, y, and z 
axes. The nonvanishing commutators are 

[~1, ~2] = ~3, [~3, ~1] = - - ~ 2  (5) 

It is the high symmetry of  this spacetime that makes it possible to 
separate the variables, and in some cases to solve exactly the field equations. 

2. FIELD EQUATION 

In order to write the field equation for a massless spin-�89 field we 
introduce a tetrad e~(x )  that satisfies the relation 

g , , . ( x )  = e '~.(x)  e t ~ , ( x ) % r  (6) 
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For the present case we can choose 

e~ = 1, ei,(x) = ai(t),  e~ = 0 (7) 

where the ai are given by equation (2). A set of curved spacetime Dirac 
matrices that satisfy 

%(x)3 ,v (x )  + 3,~(x) 3,.(x) = -2g~,~(x) (8) 

is easily calculated (Chimento and Mallerach, 1986; Castagnino et al., 1988) 

3,o= aTo y i =  a~l(t)~i ,  3,o'Yo, Yi = ai(t)~/i (9) 

where the ~" are Dirac matrices in flat Minkowski spacetime. 
The Weyl equation in curved spacetime is 

3 ,~v .4 , (x )  = o 

(1 + 3,5)0 = 0 

with 

l r  - ~  ~ i l l  p V.=0~.+os. ,  o-~,=gLy Y ]e~et3~;~ 

(10a) 

(lOb) 

and 

( l la )  

75 = 7o717273 ( l lb)  

In the case of the metric (1) we can separate variables according to 

/kl(t) 
1 fkz(t) eiX.x (12) 

O k -  (2,rr)3/2(ala2a3)l/2 fk3(t) 

fk4(t) 

Substituting (12) into equation (lOa), we have 

Ofk(t) :=fk = - - iAk(t) fk( t )  (13) 
Ot 

where the matrix Ak is 

and 

Ak= 

0 0 - K 3  - K -  

0 0 - K  + K3 

- K 3  - K -  0 0 

- K  + K3 0 0 

Ki := ki/ai  (t) ,  K -~ = K1 • iK2 (14) 

902/32/6-7  
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Equation (10b) gives the conditions fk~ =fk3 := F( t ) ,  fk2 =fk4 := G(t). 
Taking into account this condition in equation (13) gives 

F= i (K-G+ K3F) (15a) 

= i(K+F - KaG) (15b) 

After elimination of  G(t) or F(t) we obtain second-order differential 
equations for F(t) and G(t). The differential equations are, after using the 
explicit form of  the ai(t), 

tqffr+qtq-aP+[ik3(1-3q)t3q-2+k2t-qq-k~tsq-2]F=O (16a) 

tqG+qtq-lG+[ika(1-aq)taq-2+k~t-q+k~tsq-2]G=O (16b) 

2 2 where k~ = k l +  k2. It is clear that we need to solve only one of these 
equations, say (16a), and then the functional form of  G(t; k3) will be that 
of  F(t; -k3).  There are several values of  q for which equation (16) can be 
solved; they are considered in the following section. 

3. EXACT SOLUTIONS 

Here we consider those values of q for which it is possible to have 
exact solutions to equations (16). 

q = 0  

As mentioned above, this is a region of  flat spacetime in non-Cartesian 
coordinates, as can be seen from the coordinate transformation t ' =  t sinh z, 
x' = x, y'  = y, z' = t cosh z. The field equation is 

the solution is 

where 

~ + \----~{ k2 + ik3 + k2 )F=O 

F = x/t [AeJ~(kfl) + BkJ-~(kfl)] 

[1 - 4 ( k 2 +  ik3) ] 1/2 

2 

(17) 

(18) 

and J~ is the Bessel function of order u. The Dirac equation in this flat 
Kasner spacetime was considered by Shishkin and Andrushkevich (1985). 
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This case is a fiat Robertson-Walker universe with t ~/3 expansion law, 
and now the field equation is 

tz[r+t-[=+k2d/3F=O, k2=kZ +k] (19) 
3 

The solution is 

t 1/3 Aft1/2 3k 3kt2/3)] (20) 

where J~ is the Bessel function of order ~,. The Weyl equation in Robertson- 
Walker metrics with arbitrary expansion law was considered by Villalba 
and Percoco (1990). 

1 q-----g 

The field equation takes the form 

t2ff'+ t F +  [(k~ + ik3)t + k~t2]F = 0 (21) 
2 

with the solutions 

F = t-'/4[AkW~,~/4(2ik3t) + BkW_K,,/4(-2ik3t)] (22) 

where W~,~ is Whittaker's function and 

k3 - 2ik~ 
(23) 

2k3 

q=l  

Equation (16) is in this case 

t2~ " + t/# + ( - 2  ik3 t2+ k 2 + k 2 t 4) F = 0 (24) 

and the solutions are 

F =  1 t [AkWl/z'~ki/2(ik3t2) + BkW-1/2"~k~/z(-ik3t2)] (25) 

where W~,;, is Whittaker's function. 

4. DISCUSSION 

In this work we have been able to solve the Weyl equations in some 
members of  a family of anisotropic spacetimes of Bianchi type I that are 
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of some interest  in cosmology.  The exact solut ions were ob ta ined  by means  
of  a separa t ion  of variables  that was possible because  of the high degree 

of symmetry  in this family of  cosmological  solutions.  The second quant iz-  
at ion,  part icle  in terpre ta t ion ,  and  in terac t ion  with other fields are unde r  

cons idera t ion  and  will be reported in a future paper.  
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